|
Carbon Steel
Carbon steel is a steel alloy where the primary interstitial alloying component is carbon. A higher carbon content allows the steel to become harder and stronger during its heat treatment process. Due to its versatility and cost this is used in many components of heat transfer units.
|
|
|
90/10 Cupro-Nickel
90/10 Cupro-Nickel is a copper alloy that contains nickel and other strengthening elements. It is a tough metal with high ductility. Traces of iron and manganese are used to enhance its corrosion resistance. It’s easy fabrication and welding properties make it ideal to work with in corrosive heat transfer applications.
|
|
|
70/30 Cupro-Nickel
70/30 Cupro-Nickel is a copper alloy that has the highest concentration of nickel. This alloy has improved corrosion resistance and more notably at higher velocities. This is best used with highly contaminated liquids and/or higher velocity heating/cooling applications.
|
|
|
Incoloy®
Incoloy® is typically a nickel-iron-chromium based superalloy. They are known for their resistance to oxidization and carbonization in high-temperature applications. Similar to Inconel®, Incoloy® is used in highly demanding applications that most other metals wouldn’t be able to stand up to the corrosion and/or temperature. (Incoloy® 800, Incoloy® 825)
|
|
304/L Stainless Steel
304/L Stainless Steel is the most common of the 300 series austenitic alloys. 304/L is a low carbon version of 304 which does not require post-weld annealing. This metal is used to prevent corrosive material from entering the liquid in heat transfer equipment.
|
|
317/L Stainless Steel
317/L Stainless Steel is a molybdenum austenitic stainless steel. It has improved corrosion resistance over 304/L and 316/L stainless steel. It has higher levels of molybdenum, nickel, and chromium which improve chloride pitting resistance and corrosion. This has many heat transfer applications in the chemical and energy fields.
|
|
Duplex
Duplex steels have a mixed microstructure of austenite and ferrite. They are characterized by high chromium and molybdenum with lower nickel contents. They are generally twice as strong as austenitic stainless steels, with improved resistance to localized corrosion, particularly pitting, crevice corrosion, and stress corrosion. (Duplex 2205, SuperDuplex 2207)
|
|
Monel® 400
Monel® 400 is a nickel alloy, primarily composed of nickel and copper, with traces of iron and other elements. It has a very high strength and resistance to corrosion. Coupled with its thermal conductivity and ductility, Monel® 400 is a good material to use in heat transfer units that use sea water, hydrofluoric acid, sulfuric acid, and alkalies.
|
|
Hastelloy® C
Hastelloy® C (Alloy C276) is a nickel-molybdenum-chromium “super-alloy” with an addition of tungsten. It has a superior corrosion resistance, as well as, resistance to pitting and crevice corrosion. It also has a strong resistance to oxidizing media. Hastelloy® C is excellent for many heat transfer applications including chemical procession, pollution control, pulp and paper, and many more.
|
|
Aluminum
Aluminum alloys are known for having a high resistance to corrosion and highly malleable. It is very light relative to other metals, and has a good thermal conductivity. At high temperatures aluminum starts to lose its strength. However, at very low temperatures the strength increases while retaining its ductility making aluminum great for low-temperature heat transfer applications.
|
|
AL-6XN
AL-6XN is a superaustenitic stainless steel containing high nickel and molybdenum contents along with nitrogen and chromium. It is known for its resistance to chloride pitting, crevice corrosion, and stress corrosion cracking. Its nitrogen content gives it a higher tensile strength than common austenitic stainless steels. AL-6XN is a commonly used in heat transfer applications that call for higher temperatures and lower pH levels like food processing.
|